翻訳と辞書 |
Hemicompact space : ウィキペディア英語版 | Hemicompact space In mathematics, in the field of topology, a topological space is said to be hemicompact if it has a sequence of compact subsets such that every compact subset of the space lies inside some compact set in the sequence. Clearly, this forces the union of the sequence to be the whole space, because every point is compact and hence must lie in one of the compact sets. ==Examples==
* Every compact space is hemicompact. * The real line is hemicompact. * Every locally compact Lindelöf space is hemicompact.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Hemicompact space」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|